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Abstract

Recently, Drai et al. (J Neurosci Methods 96 (2000) 119) have introduced an algorithm that segments rodent locomotor
behavior into natural units of ‘staying in place’ (lingering) behavior versus going between places (progression segments). This
categorization, based on the maximum speed attained within the segment, was shown to be intrinsic to the data, using the
statistical method of Gaussian Mixture Model. These results were obtained in normal rats and mice using very large (650 or 320
cm) circular arenas and a video tracking system. In the present study, we reproduce these results with amphetamine, phencyclidine
and saline injected rats, using data measured by a standard photobeam tracking system in square 45 cm cages. An intrinsic
distinction between two or three ‘gears’ could be shown in all animals. The spatial distribution of these gears indicates that, as
in the large arena behavior, they correspond to the difference between ‘staying in place’ behavior and ‘going between places’. The
robustness of this segmentation over arena size, different measurement system and dose of two psychostimulant drugs indicates
that this is an intrinsic, natural segmentation of rodent locomotor behavior. Analysis of photobeam data that is based on this
segmentation has thus a potential use in psychopharmacology research. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The measurement of locomotor activity in rodents is
one of the most widespread behavioral tests used in
psychopharmacology and neurobiology. The most com-
mon method for measuring it employs infrared photo-
beams in a small test cage, and several such systems are
available commercially. The standard analysis of pho-
tobeam results, however, usually employs general cu-
mulative measures of activity (e.g. the number of beam
breaks or, in the more advanced systems, the total
distance traveled), cumulative time spent in the center
of the chamber, etc. Such measures reflect the underly-
ing notion that locomotor activity is rather stochastic in
nature. Frequently, the ability of these measures to
discriminate between, e.g. different genotypes, drugs,

doses, and experimental treatments is rather limited.
A more advanced approach developed by Paulus and

Geyer (1991), Paulus et al. (1990) assumes that locomo-
tor behavior in the photobeam cage is in fact structured
and patterned, and the appropriate measures should
reflect this structure. The measures used by this
method, such as the entropy and the fractal dimension
of the path, are based on general considerations of
dynamical systems theory. This method was proved to
have more discriminative power than the usual activity
analysis. Due to the generality of this approach, how-
ever, it is sometimes difficult to interpret its results in
specific cognitive, psychological or ethological terms.

The detailed structure of rat locomotor behavior,
especially under various pharmacological, neurological
and genetic manipulations, was studied in the open field
(e.g. Gingras and Cools, 1997; Cools et al., 1997;
Szechtman et al., 1998; Whishaw et al., 1994), and in
various other setups that measure spatial behavior (e.g.
Morris, 1984; Whishaw et al., 1993). Since studies
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utilizing the photobeam cage, however, do not usually
analyze their data in spatial terms, they can neither
contribute nor draw from this body of knowledge. This
is not due to any technical problem, since at least some
of the currently available photobeam systems can ex-
port raw coordinate files, but because of the inherent
complexity of this analysis. Software for spatial analysis
of photobeam data may thus remedy this problem.

In recent years, an ethological study of the structure
of the path traveled during exploratory behavior of rats
in large (several meters size) arenas revealed that it
consists of distinctive patterns. The most basic of these
patterns are ‘stops’ and ‘progression segments’, serving
as the basic units or ‘primitives’ of the structure. More
complex patterns such as ‘principal places’, ‘home base’
and ‘excursions’ (Eilam and Golani, 1989; Golani et al.,
1993; Tchernichovski and Golani, 1995; Tchernichovski
et al., 1989) are defined by the spatial and sequential
organization of these primitives. Recently, specialized
software called Software for the Exploration of Explo-
ration (SEE) was developed by Drai and Golani (2001)
for visualization and quantification of these patterns
out of the automatically measured path. SEE analysis
may prove a useful complementary approach because it
quantifies specific movement patterns that are usually
easier to visualize and interpret in ethological and
psychological terms.

Although it is apparent even to the untrained ob-
server that the progression of a rat into a novel envi-
ronment typically consists of bouts and stops, the
algorithmic definition and automatic recognition of
these primitives in the time series of the animal’s coor-
dinates has not been straightforward. This is because a
stop does not necessarily imply zero speed. As a matter
of fact, during a so-called stop a rat may perform many
‘local’ movements, such as scanning movements, rear-
ing, backward and sideway steps, etc. In order to show
that the categorization of the behavior into ‘stops’ and
‘progression segments’ is the result of a natural distinc-
tion, and not an arbitrary partitioning imposed over a
continuum, it was necessary to demonstrate that the

distribution of the speed, or some similar measure, is
typically multi-modal. Such multi-modality has recently
been shown by Drai et al. (2000) for both rats and mice
in a large arena.

The procedure suggested by Drai et al. (2000) for the
segmentation of spatial behavior into stops and move-
ment segments consists of two steps. In the first step,
segments of ‘non-arrest’ are defined as those in which
the speed is higher than the measurement noise of the
tracking system (Fig. 1). Each of these segments is
specified by the maximum speed attained within it. In
the second step, the distribution of these maxima is
analyzed. An unexpected result was that this distribu-
tion is typically not bi-, but tri-modal. The significance
of three different components in the distribution was
shown by using the statistical method of Gaussian
Mixture Model. This method models the distribution as
a sum of several normal distributions (Fig. 2). Se-
quences that include only alternation between segments
belonging to the slower component (‘1st gear’, G1) and
arrest segments (that were filtered out at the first stage)
were termed ‘lingering episodes’. Lingering episodes
were shown to be spatially localized, covering distances
of rarely more than one rat length. In other words,
although there is no a-priori reason preventing a rat
from covering a long distance in the lingering mode, it
in fact hardly ever does so in the context of exploratory
behavior in a novel environment. Lingering episodes
coincide very well with the subjective notion of stops,
as would be recognized in the videotape by an experi-
enced observer. Segments of the mid-speed component
(‘2nd gear’, G2) cover longer distances, typically
around one rat length, while segments of the high-speed
component (‘3rd gear’, G3) cover distances ranging
from several rat lengths up to several meters (limited
only by arena size). This segmentation of the animal’s
path thus supplied operative definitions of ‘within place
behavior’ versus ‘going between places’. The spatial
aggregation of several non-consecutive lingering
episodes can now be used to operatively define the
cognitive notion of ‘a place’. The more complex pat-

Fig. 1. A time-series of movement speed during 2 min out of a 5.0 mg/kg amphetamine-injected rat photobeam session. The horizontal line denotes
the 4 cm/s threshold of estimated measurement error. Any speed value below this threshold is considered in this study as arrest. ‘Non-arrest’
segments are each specified by the maximum speed attained within this segment (black dots).
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Fig. 2. Left, the empirical distribution of segment maximum speed, using the density estimation curve, in a 60 min session of one saline-injected
rat (top), one 5.0 mg/kg amphetamine-injected rat (middle) and one 10.0 mg/kg PCP-injected rat (bottom). Right, the maximum likelihood
Gaussian Mixture Models of the corresponding distributions on the left. Dashed lines show the individual Gaussian components. The solid line
shows the sum (i.e. the mixture) of the Gaussians. In both cases shown here, the addition of the third component to the model increased the
likelihood significantly (at 0.01 level), while additional components did not.

terns of exploratory behavior that were earlier men-
tioned can likewise be defined algorithmically (and
measured automatically) as compositions of stops (i.e.
lingering episodes) and progression segments (i.e. G2
and G3). Such algorithmic definition is the basis for the
framework of SEE (Drai and Golani, 2001).

It is, therefore, clear that SEE analysis has a high
potential for augmenting the methods of locomotor
behavior analysis currently in use in psychopharmacol-
ogy, by automatically recognizing and quantifying pat-
terns that were shown to have intrinsic meaning for the
animal. Such patterns are relatively easy to interpret in
cognitive and psychological terms.

SEE analysis, however, crucially depends on the seg-
mentation of the path into its primitives of stops and
movement segments, i.e. on the existence at least two
components in the distribution of speed maxima. It is
essential, therefore, to determine how general these
components are, and how independent they are of
arena size, experimental protocol and tracking system
properties. Here we report the application of speed

segmentation to data of drug-injected rats, measured by
a standard photobeam chamber 43 cm wide.

About 35 days old Sprague–Dawley rats were in-
jected with four doses of d-amphetamine (AMPH) and
five doses of phencyclidine (PCP), and their locomotor
behavior was measured for 1 h in standard ‘Tru-Scan’
photobeam chambers. The coordinates of the path were
exported and analyzed by a SEE program, using the
same segmentation procedure previously described, in
order to determine if similar components in the distri-
bution of speed maxima exists, and if their spatial
distribution is similar to the one found in data from
large arenas.

Photobeam systems are widely available, and at least
some of the new systems are able to export the coordi-
nates of the path as ASCII files for analysis. A demon-
stration of segmentation in such data will enable the
application of SEE to its analysis. Such an application
has a high potential for use in psychopharmacology
and behavior genetics research.
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2. Methods

2.1. Animals

Subjects used in this experiment were male Sprague–
Dawley rats (Charles River Laboratories) weighing
100–125 g. The animals were housed in trios in clear
plastic cages with wire grid lids. Access to food and
water was unrestricted. The animals were kept in the
animal facility maintained on a 12-h light: 12-h dark
cycle (lights on at 19:00 h). The animals used in this
study were maintained in facilities fully accredited by
the American Association for the Accreditation of Lab-
oratory Animal Care (AAALAC) and the studies were
conducted in accordance with the Guide for Care and
Use of Laboratory Animals provided by the NIH.

2.2. Locomotor acti�ity measurement

All subjects received one injection of either drug or
saline on the treatment day. The animals were brought
down from the animal facility and placed in a holding
room for 60 min. Each subject was weighed and
marked. After 60 min each animal was placed immedi-
ately in the activity monitor for a 30 min baseline
without drug. After a 30 min period, the session auto-
matically paused. During this interval, each subject
received an injection of saline, PCP or AMPH and was
placed back into the locomotor activity monitor for 70
min. Each animal was used only once for each drug and
dose. All injections were given intraperitoneal (i.p.) in
an injection volume of 1 ml/kg body weight. PCP and
AMPH were dissolved in 0.9% sodium chloride. Doses
and number of animals in the PCP group were—saline,
five animals; 1 mg/kg, six animals; 3 mg/kg, seven
animals; 5 mg/kg, eight animals; 10 mg/kg, ten animals.
Doses and number of animals in the AMPH group
were—saline, seven animals; 1.5 mg/kg, 11 animals; 3
mg/kg, 12 animals; 5 mg/kg, 12 animals. Animals were
assigned to each dose condition in a manner that
resulted in each cage having several dose conditions.
Station assignments were distributed such that each
locomotor activity station ran an equal number of drug
and dose conditions. Within each session all doses of
the drug were represented.

Locomotor activity was monitored in Coulbourn In-
struments’ Tru Scan Activity Monitors. Animals were
placed in a square (43×43cm) Plexiglas retainer. Activ-
ity in the monitor was recorded by photobeam inter-
ruptions. A ring of sensors, spaced 2.54 cm from each
other, measured the X–Y location of the animal four
times per second. The activity monitor computed the
location of the animal in each of the X and Y dimen-
sions as the middle point between the extreme beam
interruptions in this dimension.

2.3. Analysis methods

Data were analyzed by the same algorithms devel-
oped for a large arena, using a video tracking system
(Drai et al., 2000). Raw data files of the coordinates
were exported from the photobeam cage, using ‘Tr-
uScan’ software. These files are ASCII files, which can
be imported into Mathematica, the programming envi-
ronment in which SEE resides. After computation of
movement speed, segments having higher speeds than
the system’s noise level were filtered (Fig. 1), and the
distribution of their maximal speeds were analyzed
using the Gaussian Mixture Model (Fig. 2).

There were only two differences between the process
of analysis used in this study and the one used in Drai
et al. (2000). First, speed was estimated by the Lowess
method, rather than the ‘local movement’ method, for
reasons that will be explained in the next section.
Second, the Gaussian Mixture analysis was performed
on the distribution of speed maxima themselves, rather
than on the distribution of the log-transformed speed
maxima, as in Drai et al. (2000). The reason for this is
that in the large arena rats can develop much higher
speeds, so that the range of speeds extends over almost
two orders of magnitude. The range of G2 and espe-
cially G3 speeds extended over several times more than
the range of G1 speeds, so that a log-transformation
was necessary to elucidate the multi-modality of the
distribution. In contrast, the range of speeds in the
small photobeam chamber was less than one order of
magnitude, thus making the log-transformation inap-
propriate. In fact, in most of the rats in this study, we
got similar results while using log-transformation. Only
in some of the less active rats (and thus having a
smaller range of speeds) the log-transformation masked
the multi-modality of the distribution. We, therefore,
omitted the log transformation, as to enable compari-
son among all animals.

The Lowess method for the computation of speed
will be explained here in more detail since this is the
first account of its use in the segmentation of locomotor
behavior. For a detailed description of the other meth-
ods see Drai et al. (2000).

2.3.1. Lowess smoothing and �elocity estimation
Drai et al. (2000) estimated the speed by computing

the standard deviation (S.D.) of the distances of the
data points to their mean within a sliding time window
0.4 s wide, constructed around each data point in turn
(S.D. method). Here we employed a more robust and
exact way for both smoothing measurement noise and
estimation of the speed, namely Locally Weighted Esti-
mation and Smoothing Scatter plots (‘Lowess’, see
Cleveland, 1977). The use of Lowess is especially cru-
cial in this study since our segmentation is based on the
analysis of speed, which is even more subject to mea-
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surement noise than the coordinates of the path. This is
because any method of estimating the speed in a given
time point ti depends on measuring the coordinates in
at least two time points (e.g. the difference between the
coordinates at times ti and ti−1), thus adding up the
noise components of these measurements. In addition,
Lowess is a robust method that automatically disre-
gards ‘outliers’, i.e. data points that fall very far from
most nearby points, and are clearly a result of some
artifact in the measurement or analysis system. With
non-robust smoothing methods, such as moving aver-
ages or the S.D. method, such data points will greatly
affect the location and velocity estimation of neighbor
time points.

Lowess uses a sliding time window, constructed in
turn around each data point. In the first iteration, data
points within each time window are fitted with a poly-
nomial using least-square optimization. In order to
prevent artificial discontinuities generated by the border
of the time window, the least-square optimization is
weighted by a smooth weight function that has a maxi-
mal value at the center of the time window (i.e. at the
point around which it was constructed) and descends to
zero at its borders. The value of the optimal polynomial
at the center of each window is used as a first estima-
tion of the data point around which the window is
centered. In addition, we used the slope of the polyno-
mial at the center as a first estimation for the velocity at
the respective data point. In the second iteration, step
one is repeated, but this time data points are also
weighted by the absolute difference between them and
the first estimation. Data points that are far enough
(more than six medians of the absolute estimation
error) from the first estimation are considered ‘outliers’
and get a zero weight, i.e. they will be completely
disregarded from computing the new estimation within
each time window. Values and slopes of the new poly-
nomials constitute the second estimation for the loca-
tion and velocity in the respective data points. It is
possible to repeat this procedure even with a third
iteration, or until the convergence of the estimations,
but in most of the cases, differences between the second
estimation and further estimations are very small.

The Lowess algorithm (Cleveland, 1977) was pro-
grammed in the Mathematica language as part of the
SEE package. We computed the location and velocity
estimations for the x component and the y component
of the coordinate time series separately, then combined
these estimations to get the two-dimensional estimation
for spatial location and velocity. This separation means
that a data point that was considered an outlier in one
dimension was not necessarily considered an outlier in
the other dimension. This procedure, however, suits the
photobeam method, since in this method the location of
the animal is measured independently in each dimen-
sion. The speed (i.e. the absolute length of the velocity

vector) was estimated by computing the square root of
the sum of the squares of the velocity estimations in the
two dimensions. The smoothed locations were used for
computing the spatial spread (see Section 3) and for
visualizations (as in Fig. 5).

As in all such methods, Lowess involves a choice of
the proper amount of smoothing, which in this case
depends on the width chosen for the time window and
the degree of the polynomial used for fitting the data
within the window. We tested several combinations and
settled on a time window 11 points (2.75 s) wide and a
3rd degree polynomial, which seem to eliminate most of
the noise while not ironing movement peaks and stops.
We tested the segmentation in some of the animals
using somewhat different parameters, and there was
very little effect on the final results.

It should be noted that Lowess is usually used for
estimating general trends in scatter plots with a large
noise component. It is, therefore, customary to use a
very wide window and only a 1st or 2nd degree polyno-
mial. For our needs of estimating the second derivative
in a highly undulating but relatively smooth series,
however, a small window is necessary. We found that a
higher degree polynomial enabled us to increase this
window width somewhat (thus increasing sample size
and decreasing the effect of noise and outliers) without
over-smoothing. For example, a 3rd degree polynomial
can curve twice, thus not eliminating a stop that is
much shorter than the 2.75 s duration of the time
window. In any case, the degree must be kept consider-
ably lower than the number of data points in the
window.

2.3.2. Density estimators
The empirical distributions of speed maxima are

presented in this paper using density estimators instead
of histograms. Density estimators (Silverman, 1980) are
smoothed versions of histograms. They use moving bin
location to obtain a more precise estimate of the con-
centration of observations at a given value. In this way,
the discontinuities displayed in the histogram, which
are an artificial result of the non-overlapping bins, can
be avoided, and better estimates are obtained. The
curves obtained through a density estimator involve a
choice of proper degree of smoothing. As with choosing
the proper bin width for a histogram, we choose in each
case the minimal degree of smoothing for which small
random fluctuations are smoothed, while genuine fea-
tures are not ironed away (Silverman, 1980).

2.3.3. The Gaussian Mixture Model
We use the Gaussian Mixture Model to analyze the

distribution of speed maxima. This model is used for
recognizing distinct components within a population.
When subjected to electrophoresis, for example, a mix-
ture of distinct proteins ideally yields a perfect separa-
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tion of the mixture into its components, i.e. all the
molecules of each component lie precisely at a distance
determined by their specific mass. In practice, however,
the distance a particular molecule travels is affected by,
e.g. convection. As a result, the distances traveled by
each type of molecule form a Gaussian. When plotting
concentration against distance from origin, one gets a
single curve showing peaks corresponding to the medi-
ans of each Gaussian. Given a protein mixture, the
number of peaks in the curve corresponds to the num-
ber of components. The actual proportion of each
component can be estimated by fitting a Gaussian
Mixture Model to the empirical curve. This model
consists of a sum of distinct Gaussians weighted by their
corresponding proportions. The proportions of the
components in the protein mixture are then calculated
by determining the values of the proportions that give
maximum likelihood to the model. Note that the
method is applicable regardless of whether the individ-
ual Gaussians partially overlap.

The parameters of the model are estimated by using
the Expectation-Maximization (EM) algorithm (Everitt,
1981). The algorithm estimates the maximum likelihood
parameters (proportions, means, and S.D.) of a mixture
with a given number of components. EM is an iterative
algorithm that starts with user-given initial values, and
incrementally improves the likelihood function until
further iterations yield only a negligible improvement.
The actual number of components of the model is
determined by comparing the maximum likelihood
value of a n-components mixture with that of a (n−1)-
component mixture until the increased number of com-
ponents increases the likelihood only marginally
(Everitt, 1981). The EM algorithm was programmed in
the Mathematica language within the SEE package. We
always started with one component and increased the
number of components until the increase in the expo-
nent of the likelihood was smaller than 4, which corre-
sponds to a significance level of P�0.01 (see Drai et al.,
2000 for details).

3. Results

As expected from the known psychostimulant nature
of both drugs, there was a dose-related increase in the
activity measured by the photobeam system. The activ-
ity (distance traveled) is shown for the PCP injected rats
in Fig. 8 and for the AMPH injected group in Fig. 9
(connected dark squares). The activity computed by
SEE from the raw data was identical. In the next
paragraphs we follow with SEE analysis of the gears in
these data.

Fig. 1 demonstrates a typical 2-min time series of
movement speed in a 5.0 mg/kg AMPH-injected rat, as
estimated by the Lowess algorithm (see Section 2).

Typical time series of the speed in the PCP and saline
groups do not seem apparently different. The noise level
of speed measurement error was estimated to be 4 cm/s.
This is slightly higher than the value of speed that will
be measured in the case that one end of the animal’s
body interrupts a beam for only one time unit (0.25 s in
this study). Such speed values might thus be generated
by tremor or breathing movements. Each sequence of
speeds higher than this threshold was considered as a
‘non-arrest’ segment, and was represented by the maxi-
mum speed that was attained within this segment.

Fig. 2 (left) shows typical distributions of the speed
maxima from 60 min sessions of one saline-injected rat,
one AMPH rat and one PCP rat, as estimated by
density estimation curves (see Section 2). The curves are
clearly multi-modal. Fig. 2 (right) shows the best curves
given by the Gaussian Mixture Model for these two
sessions, together with the best estimation generated for
the different components. In both of the cases demon-
strated in Fig. 2, three Gaussian components were
found to best account for the overall distribution of
speed maxima. Note also that the means, variances and
proportions of each of the three components of the
three rats are similar. We term these components from
the left to the right G1, G2 and (when it is present) G3.

Out of 78 animals in this study, 69 (88%) had three
significant components. The other nine had only two
significant components. Out of 42 animals of the
AMPH group, only three had two components, all of
them belonging to the saline-injected sub-group. Out of
the 46 animals in the PCP group, seven had two
components, and they were found in all doses. In both
the AMPH and the PCP groups, most of the rats with
only two components had low activity, and some did
not complete even a one full trip around the 43×43 cm
activity cage. In the next section we discuss this varia-
tion in the number of components.

The model gives the means and standard deviations
of each of the Gaussian components. Usually there is
some overlap between nearby components (as in Fig. 2).
This means that, with any choice of a threshold between
adjacent components, some segments will be mis-
classified. In order to minimize the number of mis-
classified segments we define the threshold between
subsequent components as the value in which their
density curves intersect (Drai et al., 2000).

Fig. 3 displays the estimation generated by the Gaus-
sian Mixture Model for the values of G1 mean, G1/G2
threshold, G2 mean, G2/G3 threshold, and G3 mean
(the last two only if there were three components), in
four doses of the AMPH-injected rats. The rats within
each dose are ordered by an increasing activity, as
measured by the overall length of the path. In most
animals, G1 mean was at 5 cm/s, G2 mean at 7–10
cm/s, and G3 mean at 15–20 cm/s. There seems to be
little effect of dose or activity on these values, except for
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a slight tendency to increase G3 mean speed at higher
activities or doses. Comparison of group means using an
F-test (one-way ANOVA) did not find significant differ-
ences between doses (all P values larger than 0.08) with
either gear means or gear thresholds.

Fig. 4 displays the estimations for the same values in
the five doses of the PCP-injected rats. Typical values are
similar to those found with AMPH, perhaps slightly
lower for G2 and G3 means. In this group also, no
significant differences where found between doses (all P
values larger than 0.34) with either gear means or gear
thresholds. Also, in each of the PCP doses there were one
or two animals with only two components.

As in Drai et al. (2000), after categorizing each
non-arrest segment as a G1, G2 or G3 segment, subse-
quent G1 and arrest segments (which were filtered out
at the previous step) were joined together and termed
‘lingering’ episodes. This is because the distinction be-
tween the ‘arrest’ and G1 categories (i.e. between move-
ments that are considered to be measurement errors and
movements which are considered minimal motions of the

animal) is in general very difficult, depending critically
on the properties and resolution of the measurement
system.

The main finding of Drai et al. (2000) for rats and mice
in the large arena was that lingering is actually ‘within
place’ behavior, while G3 segments (and perhaps also
G2) are used for progression between different places.
That is, although a-priori it is quite possible for the
animal to cover a long distance in the lingering mode, in
reality it hardly ever does so. Lingering episodes are not
only spatially restricted, they also tend to aggregate into
specific places, while the distance-covering G3 segments
tend to connect these places. This property has also been
found in the present study in the photobeam chamber.
This is illustrated for one of the 5.0 mg/kg AMPH rats
in Fig. 5. The paths and spatial distribution of G2
segments seems to be different from those of both
lingering and G3, although their function is not clear yet.

In order to quantify the difference between the dis-
tance-covering properties of the three gears we compute
the spatial spread of each segment as the maximal

Fig. 3. Values of G1 mean (closed squares), G1/G2 threshold (open squares), G2 mean (close triangles), G2/G3 threshold (open triangles) and G3
mean (closed asterisks) in all the AMPH group rats. The four graphs correspond to doses (from the left) saline, 1.5, 3.0 and 5.0 mg/kg. Animals
on the horizontal axis of each graph are ordered according to increasing activity level. Speed units on the vertical axis are cm/s. Animals that had
only two significant components do not have values for G2/G3 threshold and G3 mean.

Fig. 4. Values of G1 mean (closed squares), G1/G2 threshold (open squares), G2 mean (close triangles), G2/G3 threshold (open triangles) and G3
mean (closed asterisks) in all the PCP group rats. The five graphs correspond to doses (from the left) saline, 1.0, 3.0, 5.0 and 10.0 mg/kg. Animals
on the horizontal axis of each graph are ordered by an increasing activity level. Speed units on the vertical axis are cm/s. Animals that had only
two significant components do not have values for G2/G3 threshold and G3 mean.
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Fig. 5. Smoothed path plots of lingering episodes (left), G2 segments (middle) and G3 segments (right) for a representative AMPH rat in the
photobeam chamber. The grid represents the beam locations, 2.54 cm apart, and the resolution of the tracking system is half of this distance, i.e.
1.27 cm, since the coordinate of the animal’s center is computed as half the distance between the extreme beam interruptions. The path plots
shown here are the result of the same Lowess smoothing used for estimating the speed.

Fig. 6. Values of the median spatial spread of lingering episodes (squares), G2 segments (triangles) and G3 segments (asterisks) in all the AMPH
group rats. Bars represent lower and upper quartiles. The four graphs correspond to doses (from the left) saline, 1.5, 3.0 and 5.0 mg/kg. Animals
on the horizontal axis of each graph are ordered by an increasing activity level. Distance units on the vertical axis are cm. Animals that had only
two significant components do not have values for G3 median.

Fig. 7. Values of the median spatial spread of lingering episodes (squares), G2 segments (triangles) and G3 segments (asterisks) in all the PCP
group rats. Bars represent lower and upper quartiles. The five graphs correspond to doses (from the left) saline, 1.0, 3.0, 5.0 and 10.0 mg/kg.
Animals on the horizontal axis of each graph are ordered by an increasing activity level. Distance units on the vertical axis are cm. Animals that
had only two significant components do not have values for G3 median.

distance attained within this segment (i.e. the maximum
distance between any two coordinates of the path
within this segment). Medians, lower quartiles and up-
per quartiles of the spatial spread in each component
are shown in Fig. 6 (AMPH rats) and Fig. 7 (PCP rats).
In most animals, G3 segments typically cover distances
of 15–30 cm. That is, more than one body length and

approaching the side length of the arena (43 cm).
Lingering episodes, in contrast, typically cover less than
8 cm. G2 segments typically cover 7–12 cm, distinctly
different from the G3 segments but somewhat less
distinct from the lingering episodes. Note that we know
from the outset that there is some overlap between the
components, causing certain misclassification. The ‘er-
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ror bars’ in Figs. 6 and 7 are thus not intended to test
the significance of the difference, but only to give a
general notion of it.

While the typical speed and segment length within
each gear was similar across both drugs and all doses,
the number of segments within all gears changed in a
dose related fashion with both drugs (Figs. 8 and 9). In
other words, most if not all of the considerable hyper-
activity induced by both AMPH and PCP did not stem
from any increase in the typical segment length in each
gear, but rather from the increase in their number. This
result is similar to what was earlier found with hyperac-
tivity induced by fimbria-phornix lesion (Whishaw et
al., 1994). Using the number of segments within each
gear, the discrimination between doses was not better
than by using the overall activity (see again Figs. 8 and
9). This discrimination, however, shows that SEE anal-

ysis can dissect general activity into two aspects, one
(the number of segments) of which is dose-dependent
aspect while the other (segment length) is much more
stable across doses, drugs and environments.

4. Discussion

The results shown here support the generality of
stops (‘lingering episodes’) and progression segments
(G2 and G3 segments) as the basic units of exploratory
locomotor behavior. As shown, the intrinsic distinction
between them is independent of arena size, arena shape,
the measurement system used and the dose of two
psychostimulant drugs. There has been no need for any
significant alteration of the segmentation algorithm,
developed by Drai et al. (2000) for the analysis of
normal behavior measured by a video-tracking system
in a 650 cm circular arena, in order to accommodate
for drug-induced behavior measured by a photobeam
system in a 43 cm square activity cage. The distinction
between staying in place and progression is thus very
resistant to changes in context, preparation, activity
and measurement system.

It is important to clarify that we consider the absence
of almost any dose-effect on the values of gear speeds
as a support for our claim that these gears constitute
basic units of rodent locomotor behavior. This absence
of effect allows as to use the gears as the ‘primitives’ of
both normal and drug-induced behavior, and thus en-
ables comparison of the structure of behavior, as con-
structed of these primitives, across doses. We expect
dose effect to be revealed in this structure. For e.g.
Figs. 8 and 9 show the dose effect in the number of
segments in each gear. We expect also differences, e.g.
in the temporal and spatial arrangement of stops and
progression segment, which is out of the scope of this
paper.

One question raised by these results is why our
analysis discovered only two significant components in
12% of the rats. A look at Figs. 4 and 5 reveals that
most two-gear animals belong to the saline group (that
had a much lower activity than drug-injected groups),
or are animals that had a lower activity within their
dose group. Some of them did not complete even one
full trip around the chamber, and others performed
only two or three round trips. There are at least two
ways in which low activity could reduce the number of
detected gears. The first is that a low-activity animal
might never use the third gear at all, or use it so
sparingly that its frequency is not significant. In such a
case we will expect the second component’s mean to be
similar to the G2 mean of the three-gear animals, as
seems to be the case with, e.g. rats 2 and 3 of the saline
sub-group in the PCP group (Fig. 4, leftmost graph).

Fig. 8. Distance traveled (group mean�S.E., line connected rectan-
gles) in all doses of PCP, and the number of segments performed
(group mean�S.E.) in each dose in G1 (black bars), G2 (gray bars)
and G4 (white bars).

Fig. 9. Distance traveled (group mean�S.E., line connected rectan-
gles) in all doses of AMPH, and the number of segments performed
(group mean�S.E.) in each dose in G1 (black bars), G2 (gray bars)
and G4 (white bars).
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The second way is that, even if the animal did use all
the gears, the sample size (i.e. the overall number of
segments) was too small for a significant discrimination
of the three components. In some of these animals, the
density estimation of the distribution indeed appeared
to be clearly tri-modal, yet the Gaussian Mixture
Model could discern only two significant components
since the overall number of segments was small (less
than hundred segments, as opposed to several hundreds
or even more than a thousand in active animals). In
such a case, there are two likely possibilities— (1) G2
segments are mostly added to the G3 component; in
such cases we expect the second component’s mean to
have an intermediate value between G2 and G3 means
of three-gear animals, as may be the case with rat c1
of the highest PCP dose (Fig. 4, rightmost graph). (2)
G2 segments are mostly added to the G1 component.
In this case, we expect the mean of the second compo-
nent, which is in fact G3, to have a value similar to the
G3 mean of the three-gear animals. This appears to be
the case in rat 4 of the second PCP dose.

Another problem in our results is the poor distinction
between the spatial spread of G1 and G2 segments, as
opposed to the clear separation between the spatial
spread of G2 and G3 segments (see Figs. 6 and 7). This
might be explained by the low resolution of the photo-
beam system with movements that are smaller than one
body length. The spatial resolution of the photobeam
system in this study is somewhat lower than the spatial
resolution of the video tracking in a large arena, one
beam per 2.54 cm distance, compared with about one
pixel per 1.50 cm. In addition, the animal’s coordinate
in the photobeam system is computed as the middle
between the extreme points in each of the x and y
dimensions. In the video tracking system the animal’s
coordinate, in contrast, is computed as the ‘center of
gravity’ of all the animal’s pixels. A computation based
on all of the animal’s detected points is likely to have a
better resolution for small movements than a computa-
tion based on only the extreme points. If, for example,
the animal is bending to one side, the photobeam
system is likely to record a larger movement than the
video tracking system. Moreover, since the computa-
tion is done separately for each dimension, the same
bending might produce different movement amplitudes
as a function of the animal’s orientation, while with the
center of gravity method the animal’s orientation does
not influence the measurement.

Note in Figs. 6 and 7 that the separation between the
spatial spreads of G1 and G2 seems to increase with
higher doses (which generally produced higher activity
in this study) and higher levels of activity within the
same dose. This suggests that the separation is real, and
is better detected when the sample size (and thus dis-
crimination between components) is increased.

Estimated speed values for G1, G2 and G3 measured

for normal rats in the large arena are several times
higher than those measured in this study for both saline
and drug-injected rats in the small photobeam cage.
Whereas typical values for the respective means of the
three components are 10, 25 and 100 cm/s in the large
arena, they amount to 5, 8 and 16 cm/s in the photo-
beam cage. It is unlikely rats can develop speeds of 100
cm/s (with maximal values as high as 300 cm/s) in a
45-cm chamber. This raises the question of the relation
between the three gears found in the two respective
environments. One explanation could be that there are
in fact four gears, of which only the slower three are
used in the photobeam cage and the faster three in the
large arena. Another explanation is that the animals
scale the typical speeds of the gears to fit the arena’s
size, much as they scale the inter-stop distance (Golani
et al., 1993). This issue should be reconciled by future
studies with arenas of intermediate sizes. A scaling will
support our hypothesis that the gears are not merely
motor, but rather cognitive in their nature. That is, that
they do not reflect, for example, different gaits. It
should be noted that our preliminary investigation of
rats that were simultaneously filmed by an additional
‘close-up’ synchronized camera (data from Tcherni-
chovski et al., 1989) could not find a correlation be-
tween gears and gates. Rather, we hypothesize that the
gears reflect a cognitive structure: the distribution of
animal-defined ‘places’ in the environment and their
connectivity.

The notion of place plays a central roll in the neuro-
sciences, in place learning (e.g. Morris, 1984; Whishaw,
1998; Silva et al., 1998), navigation (Thinus-Blanc,
1996; Etienne et al., 1998; Knierim et al., 1998), and the
study of several brain regions, especially the hippocam-
pus (McNaughton et al., 1996; Poucet and Bemhamou,
1997; O’keefe and Burgess, 1996). There is as yet,
however, no algorithmic definition of the behavior that
marks ‘a place’. We suggest that G1 consists of move-
ments that are done within places, while G3 consists of
movements that connect different places. The roll of G2
is not clear yet, but at least in this case it seem to
consists of movement in the range of one body length
that are still confined to one place (see Fig. 5). Thus,
G1 can be used to study the properties and develop-
ment of places, while G3 can be used to study the
connectivity of places and the formation of cognitive
maps. These questions, however, are best studied in a
large arena, where the resolution obtained by video
tracking is much higher, where the number of possible
places and the range of possible speed are much larger,
and where the basic organization of the behavior was
already studied. The photobeam cage is a less appropri-
ate setting to study such questions, but it has the
advantages of being smaller, easy to use and readily
available in many laboratories. SEE analysis of photo-
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beam data has thus the potential to improve the resolu-
tion of many studies in psychopharmacology.

It is interesting to note that the large-scale organiza-
tion of both saline and drug-induced behavior in this
study appeared to be different from the well-known
organization of rat exploratory behavior in a large
arena. Especially, the process of gradual growth in the
range of excursions from the home-base seemed to be
much less distinctive. This is of course understandable,
regarding that there is a much less room for ex-
ploratory expansion in a 43×43 cm chamber, and that
the animal can easily see the whole chamber in one
glance. A visualization of this large-scale organization
using SEE does reveal, however, interesting and com-
plex patterns that will be described in future papers.
Regarding this difference, the similarity in the existence
of the three gears supports our notion that they are
basic and natural units of rodent spatial behavior, from
which different large-scale patterns of behavior may be
composed.
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